Static Aeroelastic Analysis with an Inviscid Cartesian Method
نویسندگان
چکیده
An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.
منابع مشابه
Calculations of Unsteady Flow and Flutter by an Euler and Integral Boundary-Layer Method on Cartesian Grids
This paper presents an Euler and boundary-layer method capable of unsteady flow and aeroelastic simulations. An integral boundary-layer solver is coupled with an Euler solver in a “semi-inverse” manner. For the inviscid part, approximate wall boundaryconditions are implemented on non-moving mean chord positions, whereas the full nonlinear Euler equation is solved in the field for accurate resol...
متن کاملA high order moving boundary treatment for compressible inviscid flows
We develop a high order numerical boundary condition for compressible inviscid flows involving complex moving geometries. It is based on finite difference methods on fixed Cartesian meshes which pose a challenge that the moving boundaries intersect the grid lines in an arbitrary fashion. Our method is an extension of the so-called inverse Lax-Wendroff procedure proposed in [16] for conservation...
متن کاملAn Aeroelastic Analysis of a Thin Flexible Membrane
Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA’s In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There re...
متن کاملHelicopter Blade Stability Analysis Using Aeroelastic Frequency Response Functions
In the present paper, the aeroelastic stability of helicopter rotor blade is determined using Aeroelastic Frequency Response Function. The conventional methods of aeroelastic stability usually use an iterative procedure while the present method does not require such approach. Aeroelastic Frequency Response Functions are obtained by inverting dynamic stiffness matrix of the aeroelastic system. S...
متن کاملStatic and Dynamic Aeroelastic Analysis of a High Aspect Ratio Wing through CFD-CSD Coupled Method
The Solar powered unmanned aircraft have a high-aspect-ratio wings because SPUAV must satisfy the requirement of long endurance and high lift-drag ratio. Therefore, the structure of SPUAV‘s wings are structurally very flexible. The very high flexible wing might have large deformation and many aeroelastic problems. In this paper have a static/dynamic aeroelastic analysis through CFD-CSD coupled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014